94 research outputs found

    A TOOL FOR COLLECTING, QUERYING AND MINING MACROSEISMIC DATA

    Get PDF
    SEISMO-SURFER is a tool for collecting, querying and mining seismic data being developed in Java programming language using Oracle database system. The objective is to combine recent research trends and results in the fields of spatial and spatio-temporal databases, data warehouses and data mining, as well as well established visualization techniques for geographical information. The database of the tool is automatically updated from remote sources while existing possibilities allow the querying on different earthquakes parameters, the analysis of the data for extraction of useful information and the graphical representation of the results via maps, charts etc. In the present work, we extend SEISMO-SURFER to include macroseismic data collected by the Geodynamic Institute and filled in a relative database. More specifically, the seismic parameters of the strong earthquakes, stored into the SEISMO-SURFER database, are linked to the macroseismic intensities observed at different sites. Administrative information for each site, local surface geology, tectonic lines, damage photographs and detailed descriptions from newspapers are also included. University of Piraeus and Geodynamic Institute are working together to continuously update and develop SEISMO-SURFER, concerning the data included, the variety of parameters stored and the mining algorithms supported for exploiting knowledge

    Micromechanics of seismic wave propagation in granular materials

    Get PDF
    In this study experimental data on a model soil in a cubical cell are compared with both discrete element (DEM) simulations and continuum analyses. The experiments and simulations used point source transmitters and receivers to evaluate the shear and compression wave velocities of the samples, from which some of the elastic moduli can be deduced. Complex responses to perturbations generated by the bender/extender piezoceramic elements in the experiments were compared to those found by the controlled movement of the particles in the DEM simulations. The generally satisfactory agreement between experimental observations and DEM simulations can be seen as a validation and support the use of DEM to investigate the influence of grain interaction on wave propagation. Frequency domain analyses that considered filtering of the higher frequency components of the inserted signal, the ratio of the input and received signals in the frequency domain and sample resonance provided useful insight into the system response. Frequency domain analysis and analytical continuum solutions for cube vibration show that the testing configuration excited some, but not all, of the system’s resonant frequencies. The particle scale data available from DEM enabled analysis of the energy dissipation during propagation of the wave. Frequency domain analysis at the particle scale revealed that the higher frequency content reduces with increasing distance from the point of excitation

    Trajectory collection and reconstruction

    Get PDF
    The research area of trajectory databases has addressed the need for representing movements of objects (i.e., trajectories) in databases in order to perform ad hoc querying and analysis on them. During the last decade, there has been a lot of research ranging from data models and query languages to implementation aspects, such as efficient indexing, query processing, and optimization techniques. This chapter covers aspects related to data collection and handling so as to feed trajectory databases with appropriate data. We will also focus on the step trajectory reconstruction of the Geographic Privacy-aware KDD process (illustrated in Figure 2.1) emerged from the GeoPKDD project which proposed some solid theoretical foundations at an appropriate level of abstraction to deal with traces and trajectories of moving objects aiming at serving real world applications. This process consists of a set of techniques and methodologies that are applicable to mobility data and are organized in some well-defined and individual steps that have a clear target: to extract user-consumable forms of knowledge from large amounts of raw geographic data referenced in space and in time. However, when mobility data are about individuals, data collection is subject to privacy regulations and restrictions. To enable privacy-aware collection of position data, a complementary class of techniques is used, known as location PETs (privacy-enhancing technologies). This KDD process can be applied to heterogeneous sources of mobility data

    Historical overview of spinal deformities in ancient Greece

    Get PDF
    Little is known about the history of spinal deformities in ancient Greece. The present study summarizes what we know today for diagnosis and management of spinal deformities in ancient Greece, mainly from the medical treatises of Hippocrates and Galen. Hippocrates, through accurate observation and logical reasoning was led to accurate conclusions firstly for the structure of the spine and secondly for its diseases. He introduced the terms kyphosis and scoliosis and wrote in depth about diagnosis and treatment of kyphosis and less about scoliosis. The innovation of the board, the application of axial traction and even the principle of trans-abdominal correction for correction of spinal deformities have their origin in Hippocrates. Galen, who lived nearly five centuries later impressively described scoliosis, lordosis and kyphosis, provided aetiologic implications and used the same principles with Hippocrates for their management, while his studies influenced medical practice on spinal deformities for more than 1500 years

    Influence of packing density and stress on the dynamic response of granular materials

    Get PDF
    Laboratory geophysics tests including bender elements and acoustic emission measure the speed of propagation of stress or sound waves in granular materials to derive elastic stiffness parameters. This contribution builds on earlier studies to assess whether the received signal characteristics can provide additional information about either the material’s behaviour or the nature of the material itself. Specifically it considers the maximum frequency that the material can transmit; it also assesses whether there is a simple link between the spectrum of the received signal and the natural frequencies of the sample. Discrete element method (DEM) simulations of planar compression wave propagation were performed to generate the data for the study. Restricting consideration to uniform (monodisperse) spheres, the material fabric was varied by considering face-centred cubic lattice packings as well as random configurations with different packing densities. Supplemental analyses, in addition to the DEM simulations, were used to develop a more comprehensive understanding of the system dynamics. The assembly stiffness and mass matrices were extracted from the DEM model and these data were used in an eigenmode analysis that provided significant insight into the observed overall dynamic response. The close agreement of the wave velocities estimated using eigenmode analysis with the DEM results confirms that DEM wave propagation simulations can reliably be used to extract material stiffness data. The data show that increasing either stress or density allows higher frequencies to propagate through the media, but the low-pass wavelength is a function of packing density rather than stress level. Prior research which had hypothesised that there is a simple link between the spectrum of the received signal and the natural sample frequencies was not substantiated

    Why do we treat adolescent idiopathic scoliosis? What we want to obtain and to avoid for our patients. SOSORT 2005 Consensus paper

    Get PDF
    BACKGROUND: Medicine is a scientific art: once science is not clear, choices are made according to individual and collective beliefs that should be better understood. This is particularly true in a field like adolescent idiopathic scoliosis, where currently does not exist definitive scientific evidence on the efficacy either of conservative or of surgical treatments. AIM OF THE STUDY: To verify the philosophical choices on the final outcome of a group of people believing and engaged in a conservative treatment of idiopathic scoliosis. METHODS: We performed a multifaceted study that included a bibliometric analysis, a questionnaire, and a careful Consensus reaching procedure between experts in the conservative treatment of scoliosis (SOSORT members). RESULTS: The Consensus reaching procedure has shown to be useful: answers changed in a statistically significant way, and 9 new outcome criteria were included. The most important final outcomes were considered Aesthetics (100%), Quality of life and Disability (more than 90%), while more than 80% of preferences went to Back Pain, Psychological well-being, Progression in adulthood, Breathing function, Scoliosis Cobb degrees (radiographic lateral flexion), Needs of further treatments in adulthood. DISCUSSION: In the literature prevail outcome criteria driven by the contingent treatment needs or the possibility to have measurement systems (even if it seems that usual clinical and radiographic methods are given much more importance than more complex Disability or Quality of Life instruments). SOSORT members give importance to a wide range of outcome criteria, in which clinical and radiographic issues have the lowest importance. CONCLUSION: We treat our patients for what they need for their future (Breathing function, Needs of further treatments in adulthood, Progression in adulthood), and their present too (Aesthetics, Disability, Quality of life). Technical matters, such as rib hump or radiographic lateral alignment and rotation, but not lateral flexion, are secondary outcomes and only instrumental to previously reported primary outcomes. We advocate a multidimensional, comprehensive evaluation of scoliosis patients, to gather all necessary data for a complete therapeutic approach, that goes beyond x-rays to reach the person and the family
    corecore